ON THE MULTIPLICATIVE SEMIGROUP OF A RING

BY

A. A. KLEIN

School of Mathematical Sciences, Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv, Israel 69978 e-mail: aaklein@math.tau.ac.il

AND

H. E. BELL*

Department of Mathematics, Brock University St. Catharines, Ontario, Canada L2S3A1 e-mail: hbell@spartan.ac.brocku.ca

ABSTRACT

We prove that a PI-ring is finite if its multiplicative semigroup is finitelygenerated.

Euclid's Theorem on the existence of infinitely many primes may be stated as follows: The multiplicative semigroup of the ring of integers is not finitely-generated. In a very pretty paper [3], Isbell has proved that the same is true of the multiplicative semigroup of any infinite *commutative* ring; however, whether it is true for arbitrary infinite rings is an open question. Our purpose is to provide an affirmative answer for PI-rings. We prove

THEOREM: If R is a PI-ring in which (R, \cdot) is finitely-generated, then R is finite.

We follow a familiar strategy of proof. We begin with the case of prime rings, then proceed to semiprime rings and finally to arbitrary PI-rings.

^{*} Supported by the Natural Sciences and Engineering Research Council of Canada, Grant 3961. Received September 13, 1998

LEMMA 1: *Let D be a noncommutative division ring which is finite-dimensional over its center F. Then F contains a free multiplicative abelian group of infinite rank.*

Proof: The result is clear if char $F = 0$, for then F contains the multiplicative group of positive rationals. If char $F = p > 0$, then by a theorem of Jacobson [4, I, p. 315, F must contain an element t which is transcendental over the prime subfield \mathbb{Z}_p ; hence F contains the field $\mathbb{Z}_p(t)$, which contains a free multiplicative abelian group of infinite rank.

LEMMA 2: Let R be a prime PI-ring. If (R, \cdot) is finitely-generated, then R is a *total matrix ring over a finite field.*

Proof: Since R is a prime PI-ring, it has nontrivial center Z and its central localization R_Z is a primitive PI-ring [4, Th. 6.1.30]. Moreover, the elements of $Z^* = Z \setminus \{0\}$ are invertible in R_Z . It follows that (R_Z, \cdot) is finitely-generated, for if b_1, b_2, \ldots, b_r generate (R, \cdot) and b_1, b_2, \ldots, b_s are the b_i 's which are invertible in R_Z , then the elements of Z^* may be expressed as products of b_1, \ldots, b_s , so that $b_1,\ldots,b_r, b_1^{-1},\ldots,b_s^{-1}$ generate (R_Z,\cdot) . If R_Z is finite, then R is finite and hence $R = R_Z$; therefore, we may assume that R is primitive.

By Kaplansky's Theorem [4, Th. 6.1.25], $R \cong M_k(D)$, where D is a division ring finite-dimensional over its center F. Let $\dim_F R = n$, and view R as a subring of $M_n(F)$. Assume (R, \cdot) is generated by a_1, a_2, \ldots, a_r , with a_1, a_2, \ldots, a_s invertible and a_{s+1}, \ldots, a_r noninvertible. Consider the multiplicative semigroup homomorphism $\phi : R \to F$ given by $\phi(a) = \det a$. Since $\det a_i = 0$ for $i = s + 1, \ldots, r$, im ϕ is generated by det $a_1, \ldots, \det a_s$ and 0. For an element $a \in F^* = F \setminus \{0\}$, det $a = a^n \neq 0$, so $\langle \det a : a \in F^* \rangle$ is contained in the abelian group generated by $\det a_1, \ldots, \det a_s$ and therefore F^* does not contain a free abelian group of infinite rank. By Lemma 1 and its proof, we see that $D = F$, char $F = p > 0$, and F is algebraic over \mathbb{Z}_p . It follows that $\det a_1, \ldots, \det a_s$ generate a finite field, so that the elements det $a, a \in F^*$, have bounded order and so do the elements of F^* . Therefore, F is finite.

The extension from prime to semiprime rings is surprisingly involved, and it is preceded by a lemma.

Note that if R is a subdirect product of $(R_{\alpha})_{\alpha \in A}$ and B is a nonvoid subset of A, then R has a homomorphic image which is a subdirect product of $(R_{\beta})_{\beta \in B}$, namely $R/\bigcap_{\beta\in B}$ ker π_{β} . This ring may be obtained by applying the projection $\Pi_{\alpha \in A} R_{\alpha} \to \Pi_{\beta \in B} R_{\beta}$ on R.

In the next result we shall say that an element $a \in \Pi_{\alpha \in A} R_{\alpha}$ is regular (singular) on a subset B of A if $a(\beta)$ is regular (singular) in R_{β} for each $\beta \in B$.

LEMMA 3: Let R be a ring in which (R, \cdot) is finitely-generated; and suppose that *R* is a subdirect product of $(R_{\alpha})_{\alpha \in A}$, where for each $\alpha \in A$, $R_{\alpha} = M_{n_{\alpha}}(F_{\alpha})$ for some finite field F_{α} . Then $\{ |F_{\alpha}| : \alpha \in A \}$ is bounded.

Proof: Suppose on the contrary that $\{ |F_{\alpha}| : \alpha \in A \}$ is not bounded, so there exists a sequence β_1, β_2, \ldots in A with $|F_{\beta_i}| = m_i \rightarrow \infty$. Apply the projection $\Pi_{\alpha\in A}R_{\alpha} \to \Pi_{i=1}^{\infty}R_{\beta_i}$ on R to obtain a ring R' which is a subdirect product of $(R_{\beta_i})_{i=1}^{\infty}$, and for which (R',\cdot) is finitely-generated, say by a_1,a_2,\ldots,a_r . For $j = 1, 2, \ldots, r$, let $B_j = {\beta_i : a_j(\beta_i)$ is regular in R_{β_i} .

We proceed to show that there exists an infinite subset C of $\{\beta_1,\beta_2,\dots\}$ such that some of the elements a_1, \ldots, a_r are regular on C and the others are singular on C. Let $C_1 = B_1$ if B_1 is infinite and $C_1 = {\beta_1, \beta_2,...} \setminus B_1$ otherwise; let $C_2 = C_1 \cap B_2$ if $C_1 \cap B_2$ is infinite and $C_2 = C_1 \setminus B_2$ otherwise; and let $C_3 = C_2 \cap B_3$ if $C_2 \cap B_3$ is infinite and $C_3 = C_2 \backslash B_3$ otherwise. Continuing in this way, we finally get an infinite set $C = C_r$ such that for $j = 1, \ldots, r, a_j$ is either regular on C or singular on C .

Now applying the projection $\Pi_{i=1}^{\infty} R_{\beta_i} \longrightarrow \Pi_{\beta_i \in C} R_{\beta_i}$ on R', we obtain a ring R'' such that (R'', \cdot) is generated by the images of a_1, a_2, \ldots, a_r , which we denote by b_1, b_2, \ldots, b_r respectively. Since elements of R'' are products of the b_j 's and each b_j is either regular on C or singular on C, it follows that each $b \in R''$ is either regular on C or singular on C .

Choose $\beta_k \in C$ and let $|GL(n_{\beta_k},F_{\beta_k})| = t$. Since $|F_{\beta_i}| = m_i \to \infty$ and C is infinite, there exists $\beta_{\ell} \in C$ such that $m_{\ell} > 2t$. Let u be a generator of $F_{\beta_{\ell}}^{*}$; and note that since R'' is a subdirect product of $(R_{\beta})_{\beta_i \in C}$, R'' contains an element b with $b(\beta_\ell) = u$. Since $b(\beta_\ell)$ is regular, b is regular on C; in particular, $b(\beta_k)$ is regular and hence $b(\beta_k)^t = 1$. Now $b(\beta_\ell)^t = u^t \neq u^{2t} = b(\beta_\ell)^{2t}$, since the order of u in F_{β}^* is $m_{\ell} - 1 \geq 2t$; therefore, $b^t(\beta_{\ell}) - b^{2t}(\beta_{\ell})$ is in $F_{\beta_{\ell}}^*$ and $b^t = b^{2t}$ is regular on C. But $b^t(\beta_k) - b^{2t}(\beta_k) = 1 - 1 = 0$, so we have a contradiction.

We are now ready to pass from prime rings to semiprime rings.

LEMMA 4: Let R be a semiprime PI-ring. If (R, \cdot) is finitely-generated, then R *is finite.*

Proof: Let d be the degree of a polynomial identity of R, and let R be a subdirect product of a family of prime rings $(R_{\alpha})_{\alpha \in A}$. For each $\alpha \in A$, R_{α} is a PI-ring with (R_{α}, \cdot) finitely-generated; therefore by Lemma 2, $R_{\alpha} \cong M_{n_{\alpha}}(F_{\alpha})$, where F_{α} is a finite field and $n_{\alpha} \leq [d/2]$. By Lemma 3, $\{|F_{\alpha}| : \alpha \in A\}$ is finite, hence ${F_\alpha: \alpha \in A}$ is finite; and since ${n_\alpha: \alpha \in A}$ is clearly finite, ${M_{n_\alpha}(F_\alpha): \alpha \in A}$ is finite. Finiteness of R now follows from $[2, Th. II.10.16]$.

Proof of Theorem: Let N be the nil radical of R, and let a_1, a_2, \ldots, a_r generate (R, \cdot) . By Lemma 4, the semiprime ring R/N is finite; and we let $|R/N| = n$. Now since R is a finitely-generated PI-ring, N is nilpotent [1], say of index k; and since $na_1, \ldots, na_r \in N$, $n^k a_{i_1} \cdots a_{i_k} = 0$ for any $1 \leq i_1, \ldots, i_k \leq r$. This shows that $n^k R$ is finite.

Since R/N is finite and $N^k = \{0\}$, there exist distinct positive integers p, q such that $(x^p - x^q)^k = 0$ for all $x \in R$; thus R is integral and so is R/n^kR . Applying Shirshov's Theorem [4, Th. 6.3.23], we see that $(R/n^kR,+)$ is finitely-generated; and being a torsion group, it must be finite. We conclude that R is finite.

References

- [1] A. Braun, *The nilpotency of the radical in a finitely generated PI-ring,* Journal of Algebra 89 (1984), 375-396.
- [2] S. Burris and H. P. Sankappanavar, *A Course in Universal Algebra,* Springer-Verlag, Berlin, 1981.
- [3] J. R. Isbell, *On* the *multiplicative semigroup of a commutative ring,* Proceedings of the American Mathematical Society 10 (1959), 908-909.
- [4] L. H. Rowen, *Ring Theory I and II,* Academic Press, New York, 1988.