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ABSTRACT 

We prove t h a t  a P I - r ing  is finite if i ts  mul t ip l ica t ive  s e m i g r o u p  is finitely- 

genera ted .  

Euclid's Theorem on the existence of infinitely many primes may be stated as fol- 

lows: The multiplicative semigroup of the ring of integers is not finitely-generated. 

In a very pretty paper [3], Isbell has proved that the same is true of the multi- 

plicative semigroup of any infinite commutative ring; however, whether it is true 

for arbitrary infinite rings is an open question. Our purpose is to provide an 

affirmative answer for PI-rings. We prove 

THEOREM: If  R is a PI-ring in which (R, .) is finitely-generated, then R is finite. 

We follow a familiar strategy of proof. We begin with the case of prime rings, 

then proceed to semiprime rings and finally to arbitrary PI-rings. 
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LEMMA 1: Let D be a noncommutative division ring which is finite-dimensional 

over its center F. Then F contains a free multiplicative abelian group of infinite 

rank. 

Proof: The result is clear if char F -- 0, for then F contains the multiplicative 

group of positive rationals. If char F = p > 0, then by a theorem of Jaeobson [4, 

I, p. 315], F must contain an element t which is transcendental over the prime 

subfield Zv; hence F contains the field Zp (t), which contains a free multiplicative 

abelian group of infinite rank. 

LEMMA 2: Let R be a prime PI-ring. I f  (R, .) is finitely-generated, then R is a 

total matrix ring over a finite field. 

Proof: Since R is a prime H-r ing,  it has nontrivial center Z and its central 

localization R z  is a primitive H- r ing  [4, Th. 6.1.30]. Moreover, the elements of 

Z* = Z\{0} are invertible in Rz .  It  follows that  (Rz ,  ") is finitely-generated, for 

if bl, b2, . . .  , br generate (R, .) and bl, ba , . . .  , bs are the bi's which are invertible 

in Rz ,  then the elements of Z* may be expressed as products of b l , . . .  ,bs, so 

that  b l , . . .  , br, b ; 1 , . . .  , b71 generate (Rz ,  .). If R z  is finite, then R is finite and 

hence R = Rz;  therefore, we may assume that  R is primitive. 

By Kaplansky's  Theorem [4, Th. 6.1.25], R ~ Mk(D),  where D is a di- 

vision ring finite-dimensional over its center F.  Let dimF R = n, and view 

R as a subring of M~(F).  Assume (R,.) is generated by a l , a 2 , . . .  ,a~, with 

al ,  a2, . . .  , as invertible and a s + l , . . .  , a~ noninvertible. Consider the multiplica- 

tive semigroup homomorphism r : R -~ F given by r -- det a. Since det ai = 0 

for i = s +  1 , . . .  , r ,  imr is generated by d e t a l , . . .  ,det  as and 0. For an element 

a E F* ---- F \{0} ,  det a -- a n ~ 0, so (det a :  a E F*) is contained in the abelian 

group generated by det a l , . . .  , det as and therefore F* does not contain a free 

abelian group of infinite rank. By Lemma 1 and its proof, we see that  D = F,  

c h a r F  -- p > 0, and F is algebraic over Zp. It  follows that  d e t a l , . . .  , de t a s  

generate a finite field, so that  the elements de ta ,  a E F*, have bounded order 

and so do the elements of F*. Therefore, F is finite. 

The extension from prime to semiprime rings is surprisingly involved, and it is 

preceded by a lemma. 

Note that  if R is a subdirect product  of (Ra)aEA and B is a nonvoid subset of 

A, then R has a homomorphic image which is a subdirect product of (R~)~eB, 

namely R/Nf~EB ker 7r~. This ring may be obtained by applying the projection 

HaEARa ~ H~EBRf~ on R. 

In the next result we shall say that  an element a E II,~eAR,~ is regular (singular) 

on a subset B of A if a(t3) is regular (singular) in R~ for each/3 E B. 
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LEMMA 3: Let R be a ring in which (R, .) is finitely-generated; and suppose that 

R is a subdirect product of (Ro)oeA, where for each a �9 A, Ro = Mno (Fo) for 

some finite field Fo. Then {[F~ I : a �9 A} is bounded. 

Proof: Suppose on the contrary that {]F~] : a �9 A} is not bounded, so there 

exists a sequence/31,/32,.., in A with IF~I = mi -~ oc. Apply the projection 

II~eARo -+ I]~lRfl ,  on R to obtain a ring R' which is a subdirect product of 

(R~,)i~=l, and for which (R', .) is finitely-generated, say by a l , a 2 , . . .  ,aT. For 

j = 1 ,2 , . . .  ,r ,  let Bj = {/3i: a j (~ )  is regular in RZ,}. 

We proceed to show that there exists an infinite subset C of {/31,/32,... } such 

that  some of the elements a l , . . .  , ar are regular on C and the others are singular 

on C. Let C1 = BI if B1 is infinite and C1 = {/31,/32,...}\B1 otherwise; let 

C2 = CINB2 if CS1B2 is infinite and C2 = C1\B2 otherwise; and let C3 = C2nB3 

if C2NB3 is infinite and C3 = 62\B3 otherwise. Continuing in this way, we finally 

get an infinite set C = Cr such that for j = 1, . . .  , r, aj is either regular on C or 

singular on C. 

Now applying the projection H~IRt~ ~ ~ IIz, e c R ~  on R', we obtain a ring 

R" such that (R", .) is generated by the images of al,  a2, . .  �9 , a~, which we denote 

by bl, b2, . . .  , b~ respectively. Since elements of R" are products of the bj's and 

each bj is either regular on C or singular on C, it follows that  each b �9 R" is 

either regular on C or singular on C. 

Choose [3k ~ C and let [ GL(n~k,F~k)] = t. Since ]F~, I = mi --+ ~ and C is 

infinite, there exists/3t �9 C such that me > 2t. Let u be a generator of F/~; and 

note that  since R" is a subdirect product of (Rz , )~cc ,  R" contains an element 
b with b(flt) =- u. Since b(/3e) is regular, b is regular on C; in particular, b(/3k) is 

regular and hence b(~k) t = 1. Now b(flt) t = u t ~ u 2t = b(j3~) 2t, since the order 

o f u i n F *  is m e - 1  > 2t; therefore, bt(fle)-b2t(/3~) is in F* and b t = b 2t is & - & 

regular on C. But bt(13k) - b2t(/3k) = 1 -- 1 = 0, so we have a contradiction. 

We are now ready to pass from prime rings to semiprime rings. 

LEMMA 4: Let R be a semiprime PI-ring. I f  (R, .) is finitely-generated, then R 

is finite. 

Proof'. Let d be the degree of a polynomial identity of R, and let R be a subdirect 

product of a family of prime rings (Rc,)a~A. For each a C A, Ro is a PI-ring 

with (Ro, ") finitely-generated; therefore by Lemma 2, Ro =~ Mn~ (Fo), where F~ 

is a finite field and no _< [d/2]. By Lemma 3, {IFo I : a �9 A} is finite, hence 

{Fo: a �9 A} is finite; and since {no: a �9 A} is clearly finite, {M~(F~) :  a �9 A} 

is finite. Finiteness of R now follows from [2, Th. II.10.16]. 
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Proof  of Theorem: Let N be the nil radical of R, and let al,  a2 , . . .  , a r  generate 

(R, .). By Lemma 4, the semiprime ring R / N  is finite; and we let [R/N[ = n. 

Now since R is a finitely-generated PI-ring, N is nilpotent [1], say of index k; 

and since n a l , . . .  ,na t  C N ,  nkail ""a ik  -- 0 for any 1 _< i l , . . .  ,ik _< r. This 

shows that  n k R  is finite. 

Since R / N  is finite and N k ~- {0}, there exist distinct positive integers p, q such 

that (x p - xq) k = 0 for all x E R; thus R is integral and so is R / n k R .  Applying 

Shirshov's Theorem [4, Th. 6.3.23], we see that  (R /nkR ,  +) is finitely-generated; 

and being a torsion group, it must be finite. We conclude that R is finite. 
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